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Automatic Selection of k
Dirichlet Process Gaussian Mixture Model (DP-GMM):

• Number of clusters is effectively random, and can grow with 
the amount of data you have!

• While you don't have to choose k, you have to choose a 
different parameter which says basically how likely new points 
are to form new clusters vs join existing clusters



DP-GMM High-Level Idea
Cluster 1

Probability of generating a 
point from cluster 1 = 𝜋1

Gaussian mean = 𝜇1
Gaussian covariance = 𝛴1

(Rough idea) How to generate points from this DP-GMM:
1. Flip biased ∞-sided coin (the sides have probabilities 𝜋1, 𝜋2, 𝜋3, …)
2. Let Z be the side that we got (it is a positive integer)
3. Sample 1 point from Gaussian mean 𝜇Z, covariance 𝛴Z

Cluster 2

𝜋2

𝜇2
𝛴2

Cluster 3

𝜋3

𝜇3
𝛴3

…
It goes on 

forever!

There is a parameter that controls how 
these 𝜋 values roughly decay

Remark: For any given dataset, when learning the DP-GMM, 
there aren't going to be an infinite number of clusters found

There are an infinite number of parameters



Automatic Selection of k
Dirichlet Process Gaussian Mixture Model (DP-GMM):

• Number of clusters is effectively random, and can grow with 
the amount of data you have!

• While you don't have to choose k, you have to choose a 
different parameter which says basically how likely you are to 
form new clusters vs try to stick to already existing clusters

• An example of a Bayesian nonparametric model  
(roughly: a generative model with an infinite number of 
parameters, where the parameters are random)



Learning a DP-GMM
Two main approaches:

• Finite approximation where you specify some maximum 
number of possible clusters (the algorithm will find up to that 
many clusters)

• Random sampling approach (no finite approximation needed!)

• Algorithm is somewhat similar to k-means/EM for GMMs

• Algorithm output: very similar to regular GMM fitting

• Algorithm output: a bunch of samples of different cluster 
assignments (can pick one with highest probability)

This is what’s implemented in sklearn

This is what’s implemented in R (package dpmixsim)



Learning a DP-GMM

Demo



This next algorithm will give you a sense of how we get around 
specifying the number of clusters directly

k-means approximates 
(a special case of) learning GMM's.

What approximates learning DP-GMMs?



DP-means

Step 1. Start with 
everything in same cluster

Step 0. Pick concentration 
parameter    > 0λ
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DP-means

Step 1: Start with 
everything in same cluster

Step 0: Pick concentration 
parameter    > 0λ

Step 2. For each point:

Step 3. Recompute 
cluster centers

(a) If it’s not currently 
covered by gray 
balls, make it a new 
cluster center

(b) Otherwise assign it 
to nearest cluster

Repeat until convergence:
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Big picture: DP-means & DP-GMM 
have a “concentration” parameter 
roughly controlling size of clusters 

rather than number of clusters
If your problem can more naturally be thought of as 

having cluster sizes that should not be too large, can use 
DP-means/DP-GMM instead of k-means/GMM

Real example. Satellite image analysis of rural India to find villages
Each cluster is a village: don’t know how many villages there are 
total but rough upper bound on radius of village can be specified

➔ DP-means provides a decent solution!



Other Ways for Choosing k

• Choose a cost function to compute for different k

• In general, not easy! Need some intuition for what “good” 
clusters are

• Pick k achieving lowest cost

• Ideally: cost function should relate to your application of 
interest



Here’s an example of a cost 
function you don’t want to use

But hey it’s worth a shot



Residual Sum of Squares

Look at one cluster at a time

Cluster 1

Cluster 2
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Cluster 2

Residual Sum of Squares

Look at one cluster at a time

Cluster 1

Residual sum of squares for cluster 1:  
sum of squared purple lengths

Measure distance 
from each point to 
its cluster center



Cluster 2

Residual Sum of Squares

Look at one cluster at a time

Cluster 1

Residual sum of squares for cluster 1:

Measure distance 
from each point to 
its cluster center

RSS1 =
∑

x∈cluster 1

∥x − µ1∥2



Residual Sum of Squares

Look at one cluster at a time

Cluster 1

Cluster 2

Repeat similar calculation 
for other cluster

Residual sum of squares for cluster 2:

Measure distance 
from each point to 
its cluster center

RSS2 =
∑

x∈cluster 2

∥x − µ2∥2



Repeat similar calculation 
for other cluster

Measure distance 
from each point to 
its cluster center

Residual Sum of Squares

Cluster 1

Cluster 2

In general if there are k clusters:

Remark: k-means tries to minimize RSS  
(it does so approximately, with no guarantee of optimality)

RSS only really makes sense for clusters that look like circles

RSS = RSS1 + RSS2 =
∑

x∈cluster 1

∥x − µ1∥2 +
∑

x∈cluster 2

∥x − µ2∥2

RSS =
k∑

g=1

RSSg =
k∑

g=1

∑

x∈cluster g

∥x − µg∥2



Why is RSS not a good way 
to choose k?

What is RSS when k is equal to the number of data points?



A Good Way to Choose k

Want to also measure between-cluster variation

RSS measures within-cluster variation

W = RSS =
k∑

g=1

RSSg =
k∑

g=1

∑

x∈cluster g

∥x − µg∥2

B =
k∑

g=1

(# points in cluster g)∥µg − µ∥2

mean of all points
A good score function to use for choosing k:

Pick k with highest CH(k)

n = total # points
(Choose k among 2, 3, … up to 
pre-specified max)

Called the CH index 
[Calinski and Harabasz 1974]

CH(k ) =
B · (n − k )
W · (k − 1)



Hierarchical Clustering



Going from Similarities to Clusters

Generative models

There’s a whole zoo of clustering methods

Hierarchical clustering
Top-down: Start with everything in 1 

cluster and decide on how to 
recursively split

1. Pretend data 
generated by specific 

model with parameters
2. Learn the parameters 

("fit model to data")
Bottom-up: Start with everything in its 

own cluster and decide on how to 
iteratively merge clusters

Two main categories we'll talk about:

3. Use fitted model to 
determine cluster assignments



Divisive Clustering
0. Start with everything 

in the same cluster

1. Use a method to 
split the cluster

(e.g., k-means, with k = 2)
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Divisive Clustering

(e.g., k-means, with k = 2)

(e.g., pick cluster with 
highest RSS)

Stop splitting when some 
termination condition is reached

(e.g., highest cluster RSS is small enough)

2. Decide on next 
cluster to split

0. Start with everything 
in the same cluster

1. Use a method to 
split the cluster



Divisive Clustering
We can view the process 

in terms of a tree 
(colors are not important 
here and just help relate 

to the previous slide)
Each split is 

from k-means



Divisive Clustering

Each split is 
from k-means

We could keep splitting until the leaves each have 1 point

We can view the process 
in terms of a tree 

(colors are not important 
here and just help relate 

to the previous slide)



Divisive Clustering

We could keep splitting until the leaves each have 1 point

This tree is called a 
dendrogram
Helpful for visualizing 
all the intermediate 
clustering stages

Divisive clustering uses global information and keeps splitting

Agglomerative 
clustering goes 
the other way
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Agglomerative Clustering
Dendrogram

Agglomerative clustering uses local information and keeps merging

Don’t have to keep 
merging until there’s 

1 cluster!
(e.g., stop when closest 

two clusters have distance 
between their centers 
exceed a threshold)



Agglomerative Clustering
Some ways to define what it means for two clusters to be “close”  
(needed to find most similar clusters):

Single linkage: use distance 
between closest points 
across the two clusters

Complete linkage: use 
distance between 
farthest points across 
the two clusters

Average linkage: use 
average distance across 
all possible pairs

Centroid linkage: what 
we saw already (distance 
between cluster means)

Get “crowding” 
behavior

Ignores 
# items in 

each cluster

Can end up 
chaining together 
too many things
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Some ways to define what it means for two clusters to be “close”  
(needed to find most similar clusters):

Clustering can change with 
monotonic transform of distance

Agglomerative Clustering

Single linkage: use distance 
between closest points 
across the two clusters

Complete linkage: use 
distance between 
farthest points across 
the two clusters

Average linkage: use 
average distance across 
all possible pairs

Centroid linkage: what 
we saw already (distance 
between cluster means)

Can end up 
chaining together 
too many things

Get “crowding” 
behavior

Ignores 
# items in 

each cluster

Clustering stays the same with 
monotonic transform of distance

There are other ways as well: 
none are perfect



Going from Similarities to Clusters

Generative models

There’s a whole zoo of clustering methods

Hierarchical clustering
Top-down: Start with everything in 1 

cluster and decide on how to 
recursively split

1. Pretend data 
generated by specific 

model with parameters
2. Learn the parameters 

("fit model to data")
Bottom-up: Start with everything in its 

own cluster and decide on how to 
iteratively merge clusters

Two main categories we'll talk about:

3. Use fitted model to 
determine cluster assignments



Going from Similarities to Clusters
Generative models Hierarchical clustering

Top-down: Start with everything in 1 
cluster and decide on how to 

recursively split

1. Pretend data 
generated by specific 

model with parameters
2. Learn the parameters 

("fit model to data")
Bottom-up: Start with everything in its 

own cluster and decide on how to 
iteratively merge clusters3. Use fitted model to 

determine cluster assignments

You learn a model 
➔ can predict cluster assignments 

for points not seen in training

Easily works with different distances 
(not just Euclidean)

Great for problems that don’t need 
to predict clusters for future points

The most popular models effectively 
assume Euclidean distance…

Different split/merge criteria lead to 
clusters that look specific ways 

(e.g., chaining, crowding)



Example: Clustering on U.S. Counties

No need to predict which cluster new counties should 
belong to, since we’re already looking at all U.S. counties!

(using opioid death rate data across 37 years)

Image source: Amanda Coston



Clustering
Generative models Hierarchical clustering

Top-down: Start with everything in 1 
cluster and decide on how to 

recursively split

1. Pretend data 
generated by specific 

model with parameters
2. Learn the parameters 

("fit model to data")
Bottom-up: Start with everything in its 

own cluster and decide on how to 
iteratively merge clusters3. Use fitted model to 

determine cluster assignments

Many more methods we didn’t cover
• sklearn has a whole bunch more (not close to exhaustive)
• Also: remember the recommendation system setup?

• Co-clustering is the problem of clustering both users and 
items at the same time (sklearn has a few methods)


