
Clustering: Automatic
Selection of k, Hierarchical

Clustering
George Chen

Automatic Selection of k
Dirichlet Process Gaussian Mixture Model (DP-GMM):

• Number of clusters is effectively random, and can grow with
the amount of data you have!

• While you don't have to choose k, you have to choose a
different parameter which says basically how likely new points
are to form new clusters vs join existing clusters

DP-GMM High-Level Idea
Cluster 1

Probability of generating a
point from cluster 1 = 𝜋1

Gaussian mean = 𝜇1
Gaussian covariance = 𝛴1

(Rough idea) How to generate points from this DP-GMM:
1. Flip biased ∞-sided coin (the sides have probabilities 𝜋1, 𝜋2, 𝜋3, …)
2. Let Z be the side that we got (it is a positive integer)
3. Sample 1 point from Gaussian mean 𝜇Z, covariance 𝛴Z

Cluster 2

𝜋2

𝜇2
𝛴2

Cluster 3

𝜋3

𝜇3
𝛴3

…
It goes on

forever!

There is a parameter that controls how
these 𝜋 values roughly decay

Remark: For any given dataset, when learning the DP-GMM,
there aren't going to be an infinite number of clusters found

There are an infinite number of parameters

Automatic Selection of k
Dirichlet Process Gaussian Mixture Model (DP-GMM):

• Number of clusters is effectively random, and can grow with
the amount of data you have!

• While you don't have to choose k, you have to choose a
different parameter which says basically how likely you are to
form new clusters vs try to stick to already existing clusters

• An example of a Bayesian nonparametric model  
(roughly: a generative model with an infinite number of
parameters, where the parameters are random)

Learning a DP-GMM
Two main approaches:

• Finite approximation where you specify some maximum
number of possible clusters (the algorithm will find up to that
many clusters)

• Random sampling approach (no finite approximation needed!)

• Algorithm is somewhat similar to k-means/EM for GMMs

• Algorithm output: very similar to regular GMM fitting

• Algorithm output: a bunch of samples of different cluster
assignments (can pick one with highest probability)

This is what’s implemented in sklearn

This is what’s implemented in R (package dpmixsim)

Learning a DP-GMM

Demo

This next algorithm will give you a sense of how we get around
specifying the number of clusters directly

k-means approximates 
(a special case of) learning GMM's.

What approximates learning DP-GMMs?

DP-means

Step 1. Start with
everything in same cluster

Step 0. Pick concentration
parameter > 0λ

radius
√
λ

DP-means

Step 1. Start with
everything in same cluster

Step 0. Pick concentration
parameter > 0λ

DP-means

“Step 2a”. Pick point
outside of gray

coverage to make
new cluster

Step 1. Start with
everything in same cluster

Step 0. Pick concentration
parameter > 0λ

DP-means

“Step 2a”. Pick point
outside of gray

coverage to make
new cluster

Step 1. Start with
everything in same cluster

Step 0. Pick concentration
parameter > 0λ

DP-means

“Step 2a”. Pick point
outside of gray

coverage to make
new cluster

Step 1. Start with
everything in same cluster

Step 0. Pick concentration
parameter > 0λ

“Step 2b”. Assign
closest points to
current clusters

DP-means

“Step 2a”. Pick point
outside of gray

coverage to make
new cluster

“Step 2b”. Assign
closest points to
current clusters

Step 1. Start with
everything in same cluster

Step 0. Pick concentration
parameter > 0λ

DP-means

“Step 2a”. Pick point
outside of gray

coverage to make
new cluster

“Step 2b”. Assign
closest points to
current clusters

Step 1. Start with
everything in same cluster

Step 0. Pick concentration
parameter > 0λ

DP-means

“Step 2b”. Assign
closest points to
current clusters

“Step 2a”. Pick point
outside of gray

coverage to make
new cluster

Step 1. Start with
everything in same cluster

Step 0. Pick concentration
parameter > 0λ

DP-means

“Step 2b”. Assign
closest points to
current clusters

“Step 2a”. Pick point
outside of gray

coverage to make
new cluster

Step 1. Start with
everything in same cluster

Step 0. Pick concentration
parameter > 0λ

Step 3. Recompute
cluster centers

DP-means

“Step 2b”. Assign
closest points to
current clusters

“Step 2a”. Pick point
outside of gray

coverage to make
new cluster

Step 1. Start with
everything in same cluster

Step 0. Pick concentration
parameter > 0λ

Step 3. Recompute
cluster centers

DP-means

“Step 2b”. Assign
closest points to
current clusters

“Step 2a”. Pick point
outside of gray

coverage to make
new cluster

Step 1. Start with
everything in same cluster

Step 0. Pick concentration
parameter > 0λ

Step 3. Recompute
cluster centers

DP-means

“Step 2b”. Assign
closest points to
current clusters

“Step 2a”. Pick point
outside of gray

coverage to make
new cluster

Step 1. Start with
everything in same cluster

Step 0. Pick concentration
parameter > 0λ

Step 3. Recompute
cluster centers

DP-means

“Step 2b”. Assign
closest points to
current clusters

“Step 2a”. Pick point
outside of gray

coverage to make
new cluster

Step 1. Start with
everything in same cluster

Step 0. Pick concentration
parameter > 0λ

Step 3. Recompute
cluster centers

DP-means

Step 1. Start with
everything in same cluster

Step 0. Pick concentration
parameter > 0λ

Step 3. Recompute
cluster centers

Step 2. For each point:
(a) If it’s not currently

covered by gray
balls, make it a new
cluster center

(b) Otherwise assign it
to nearest cluster

DP-means

Step 1. Start with
everything in same cluster

Step 0. Pick concentration
parameter > 0λ

Step 3. Recompute
cluster centers

Step 2. For each point:
(a) If it’s not currently

covered by gray
balls, make it a new
cluster center

(b) Otherwise assign it
to nearest cluster

DP-means

Step 2. For each point:
(a) If it’s not currently

covered by gray
balls, make it a new
cluster center

(b) Otherwise assign it
to nearest cluster

Step 1. Start with
everything in same cluster

Step 0. Pick concentration
parameter > 0λ

Step 3. Recompute
cluster centers

DP-means

Step 1. Start with
everything in same cluster

Step 0. Pick concentration
parameter > 0λ

Step 2. For each point:

Step 3. Recompute
cluster centers

(a) If it’s not currently
covered by gray
balls, make it a new
cluster center

(b) Otherwise assign it
to nearest cluster

DP-means

Step 1. Start with
everything in same cluster

Step 0. Pick concentration
parameter > 0λ

Step 2. For each point:

Step 3. Recompute
cluster centers

(a) If it’s not currently
covered by gray
balls, make it a new
cluster center

(b) Otherwise assign it
to nearest cluster

DP-means

Step 1: Start with
everything in same cluster

Step 0: Pick concentration
parameter > 0λ

Step 2. For each point:

Step 3. Recompute
cluster centers

(a) If it’s not currently
covered by gray
balls, make it a new
cluster center

(b) Otherwise assign it
to nearest cluster

DP-means

Step 1: Start with
everything in same cluster

Step 0: Pick concentration
parameter > 0λ

Step 2. For each point:

Step 3. Recompute
cluster centers

(a) If it’s not currently
covered by gray
balls, make it a new
cluster center

(b) Otherwise assign it
to nearest cluster

DP-means

Step 1: Start with
everything in same cluster

Step 0: Pick concentration
parameter > 0λ

Step 2. For each point:

Step 3. Recompute
cluster centers

(a) If it’s not currently
covered by gray
balls, make it a new
cluster center

(b) Otherwise assign it
to nearest cluster

DP-means

Step 1: Start with
everything in same cluster

Step 0: Pick concentration
parameter > 0λ

Step 2. For each point:

Step 3. Recompute
cluster centers

(a) If it’s not currently
covered by gray
balls, make it a new
cluster center

(b) Otherwise assign it
to nearest cluster

Repeat until convergence:

DP-means
As you saw in the DP-GMM demo

(and is similar with DP-means),
DP-means can produce a few

extra small clusters

In practice: reassign points in small
clusters to bigger clusters

DP-means
As you saw in the DP-GMM demo

(and is similar with DP-means),
DP-means can produce a few

extra small clusters

In practice: reassign points in small
clusters to bigger clusters

DP-means
As you saw in the DP-GMM demo

(and is similar with DP-means),
DP-means can produce a few

extra small clusters

In practice: reassign points in small
clusters to bigger clusters

Can recompute cluster centers

DP-means
As you saw in the DP-GMM demo

(and is similar with DP-means),
DP-means can produce a few

extra small clusters

In practice: reassign points in small
clusters to bigger clusters

Can recompute cluster centers

Big picture: DP-means & DP-GMM
have a “concentration” parameter
roughly controlling size of clusters

rather than number of clusters
If your problem can more naturally be thought of as

having cluster sizes that should not be too large, can use
DP-means/DP-GMM instead of k-means/GMM

Real example. Satellite image analysis of rural India to find villages
Each cluster is a village: don’t know how many villages there are
total but rough upper bound on radius of village can be specified

➔ DP-means provides a decent solution!

Other Ways for Choosing k

• Choose a cost function to compute for different k

• In general, not easy! Need some intuition for what “good”
clusters are

• Pick k achieving lowest cost

• Ideally: cost function should relate to your application of
interest

Here’s an example of a cost
function you don’t want to use

But hey it’s worth a shot

Residual Sum of Squares

Look at one cluster at a time

Cluster 1

Cluster 2

Cluster 2

Residual Sum of Squares

Look at one cluster at a time

Cluster 1

Cluster 2

Residual Sum of Squares

Look at one cluster at a time

Cluster 1

Measure distance
from each point to
its cluster center

Cluster 2

Residual Sum of Squares

Look at one cluster at a time

Cluster 1

Measure distance
from each point to
its cluster center

Cluster 2

Residual Sum of Squares

Look at one cluster at a time

Cluster 1

Measure distance
from each point to
its cluster center

Cluster 2

Residual Sum of Squares

Look at one cluster at a time

Cluster 1

Measure distance
from each point to
its cluster center

Cluster 2

Residual Sum of Squares

Look at one cluster at a time

Cluster 1

Measure distance
from each point to
its cluster center

Cluster 2

Residual Sum of Squares

Look at one cluster at a time

Cluster 1

Measure distance
from each point to
its cluster center

Cluster 2

Residual Sum of Squares

Look at one cluster at a time

Cluster 1

Measure distance
from each point to
its cluster center

Cluster 2

Residual Sum of Squares

Look at one cluster at a time

Cluster 1

Measure distance
from each point to
its cluster center

Cluster 2

Residual Sum of Squares

Look at one cluster at a time

Cluster 1

Measure distance
from each point to
its cluster center

Cluster 2

Residual Sum of Squares

Look at one cluster at a time

Cluster 1

Measure distance
from each point to
its cluster center

Cluster 2

Residual Sum of Squares

Look at one cluster at a time

Cluster 1

Residual sum of squares for cluster 1:  
sum of squared purple lengths

Measure distance
from each point to
its cluster center

Cluster 2

Residual Sum of Squares

Look at one cluster at a time

Cluster 1

Residual sum of squares for cluster 1:

Measure distance
from each point to
its cluster center

RSS1 =
∑

x∈cluster 1

∥x − µ1∥2

Residual Sum of Squares

Look at one cluster at a time

Cluster 1

Cluster 2

Repeat similar calculation
for other cluster

Residual sum of squares for cluster 2:

Measure distance
from each point to
its cluster center

RSS2 =
∑

x∈cluster 2

∥x − µ2∥2

Repeat similar calculation
for other cluster

Measure distance
from each point to
its cluster center

Residual Sum of Squares

Cluster 1

Cluster 2

In general if there are k clusters:

Remark: k-means tries to minimize RSS  
(it does so approximately, with no guarantee of optimality)

RSS only really makes sense for clusters that look like circles

RSS = RSS1 + RSS2 =
∑

x∈cluster 1

∥x − µ1∥2 +
∑

x∈cluster 2

∥x − µ2∥2

RSS =
k∑

g=1

RSSg =
k∑

g=1

∑

x∈cluster g

∥x − µg∥2

Why is RSS not a good way
to choose k?

What is RSS when k is equal to the number of data points?

A Good Way to Choose k

Want to also measure between-cluster variation

RSS measures within-cluster variation

W = RSS =
k∑

g=1

RSSg =
k∑

g=1

∑

x∈cluster g

∥x − µg∥2

B =
k∑

g=1

(# points in cluster g)∥µg − µ∥2

mean of all points
A good score function to use for choosing k:

Pick k with highest CH(k)

n = total # points
(Choose k among 2, 3, … up to
pre-specified max)

Called the CH index 
[Calinski and Harabasz 1974]

CH(k) =
B · (n − k)
W · (k − 1)

Hierarchical Clustering

Going from Similarities to Clusters

Generative models

There’s a whole zoo of clustering methods

Hierarchical clustering
Top-down: Start with everything in 1

cluster and decide on how to
recursively split

1. Pretend data
generated by specific

model with parameters
2. Learn the parameters 

("fit model to data")
Bottom-up: Start with everything in its

own cluster and decide on how to
iteratively merge clusters

Two main categories we'll talk about:

3. Use fitted model to
determine cluster assignments

Divisive Clustering
0. Start with everything

in the same cluster

1. Use a method to
split the cluster

(e.g., k-means, with k = 2)

Divisive Clustering

(e.g., k-means, with k = 2)
2. Decide on next

cluster to split
(e.g., pick cluster with

highest RSS)

0. Start with everything
in the same cluster

1. Use a method to
split the cluster

Divisive Clustering

(e.g., k-means, with k = 2)

(e.g., pick cluster with
highest RSS)

2. Decide on next
cluster to split

0. Start with everything
in the same cluster

1. Use a method to
split the cluster

Divisive Clustering

(e.g., k-means, with k = 2)

(e.g., pick cluster with
highest RSS)

2. Decide on next
cluster to split

0. Start with everything
in the same cluster

1. Use a method to
split the cluster

Divisive Clustering

(e.g., k-means, with k = 2)

0. Start with everything
in the same cluster

1. Use a method to
split the cluster

(e.g., pick cluster with
highest RSS)

2. Decide on next
cluster to split

Divisive Clustering

(e.g., k-means, with k = 2)

(e.g., pick cluster with
highest RSS)

2. Decide on next
cluster to split

0. Start with everything
in the same cluster

1. Use a method to
split the cluster

Divisive Clustering

(e.g., k-means, with k = 2)

(e.g., pick cluster with
highest RSS)

2. Decide on next
cluster to split

0. Start with everything
in the same cluster

1. Use a method to
split the cluster

Divisive Clustering

(e.g., k-means, with k = 2)

(e.g., pick cluster with
highest RSS)

Stop splitting when some
termination condition is reached

(e.g., highest cluster RSS is small enough)

2. Decide on next
cluster to split

0. Start with everything
in the same cluster

1. Use a method to
split the cluster

Divisive Clustering
We can view the process

in terms of a tree 
(colors are not important
here and just help relate

to the previous slide)
Each split is

from k-means

Divisive Clustering

Each split is
from k-means

We could keep splitting until the leaves each have 1 point

We can view the process
in terms of a tree 

(colors are not important
here and just help relate

to the previous slide)

Divisive Clustering

We could keep splitting until the leaves each have 1 point

This tree is called a
dendrogram
Helpful for visualizing
all the intermediate
clustering stages

Divisive clustering uses global information and keeps splitting

Agglomerative
clustering goes
the other way

Agglomerative Clustering

0. Every point starts
as its own cluster

Agglomerative Clustering

0. Every point starts
as its own cluster

1. Find the “most similar” two clusters
(e.g., pick pair of clusters with

closest cluster centers)

Agglomerative Clustering

0. Every point starts
as its own cluster

1. Find the “most similar” two clusters
(e.g., pick pair of clusters with

closest cluster centers)

2. Merge them

Agglomerative Clustering

0. Every point starts
as its own cluster

1. Find the “most similar” two clusters
(e.g., pick pair of clusters with

closest cluster centers)

2. Merge them

Agglomerative Clustering

0. Every point starts
as its own cluster

1. Find the “most similar” two clusters
(e.g., pick pair of clusters with

closest cluster centers)

2. Merge them

Agglomerative Clustering

0. Every point starts
as its own cluster

1. Find the “most similar” two clusters
(e.g., pick pair of clusters with

closest cluster centers)

2. Merge them

Agglomerative Clustering

0. Every point starts
as its own cluster

1. Find the “most similar” two clusters
(e.g., pick pair of clusters with

closest cluster centers)

2. Merge them

Agglomerative Clustering

0. Every point starts
as its own cluster

1. Find the “most similar” two clusters
(e.g., pick pair of clusters with

closest cluster centers)

2. Merge them

Agglomerative Clustering

0. Every point starts
as its own cluster

1. Find the “most similar” two clusters
(e.g., pick pair of clusters with

closest cluster centers)

2. Merge them

Agglomerative Clustering

0. Every point starts
as its own cluster

1. Find the “most similar” two clusters
(e.g., pick pair of clusters with

closest cluster centers)

2. Merge them

Agglomerative Clustering

0. Every point starts
as its own cluster

1. Find the “most similar” two clusters
(e.g., pick pair of clusters with

closest cluster centers)

2. Merge them

Agglomerative Clustering

0. Every point starts
as its own cluster

1. Find the “most similar” two clusters
(e.g., pick pair of clusters with

closest cluster centers)

2. Merge them

Agglomerative Clustering

0. Every point starts
as its own cluster

1. Find the “most similar” two clusters
(e.g., pick pair of clusters with

closest cluster centers)

2. Merge them

Agglomerative Clustering

0. Every point starts
as its own cluster

1. Find the “most similar” two clusters
(e.g., pick pair of clusters with

closest cluster centers)

2. Merge them

Agglomerative Clustering

0. Every point starts
as its own cluster

1. Find the “most similar” two clusters
(e.g., pick pair of clusters with

closest cluster centers)

2. Merge them

Agglomerative Clustering
Dendrogram

Agglomerative clustering uses local information and keeps merging

Don’t have to keep
merging until there’s

1 cluster!
(e.g., stop when closest

two clusters have distance
between their centers
exceed a threshold)

Agglomerative Clustering
Some ways to define what it means for two clusters to be “close”  
(needed to find most similar clusters):

Single linkage: use distance
between closest points
across the two clusters

Complete linkage: use
distance between
farthest points across
the two clusters

Average linkage: use
average distance across
all possible pairs

Centroid linkage: what
we saw already (distance
between cluster means)

Get “crowding”
behavior

Ignores 
items in

each cluster

Can end up
chaining together
too many things

Some ways to define what it means for two clusters to be “close”  
(needed to find most similar clusters):

Clustering can change with
monotonic transform of distance

Agglomerative Clustering

Single linkage: use distance
between closest points
across the two clusters

Complete linkage: use
distance between
farthest points across
the two clusters

Average linkage: use
average distance across
all possible pairs

Centroid linkage: what
we saw already (distance
between cluster means)

Can end up
chaining together
too many things

Get “crowding”
behavior

Ignores 
items in

each cluster

Some ways to define what it means for two clusters to be “close”  
(needed to find most similar clusters):

Clustering can change with
monotonic transform of distance

Agglomerative Clustering

Single linkage: use distance
between closest points
across the two clusters

Complete linkage: use
distance between
farthest points across
the two clusters

Average linkage: use
average distance across
all possible pairs

Centroid linkage: what
we saw already (distance
between cluster means)

Can end up
chaining together
too many things

Get “crowding”
behavior

Ignores 
items in

each cluster

Clustering stays the same with
monotonic transform of distance

There are other ways as well:
none are perfect

Going from Similarities to Clusters

Generative models

There’s a whole zoo of clustering methods

Hierarchical clustering
Top-down: Start with everything in 1

cluster and decide on how to
recursively split

1. Pretend data
generated by specific

model with parameters
2. Learn the parameters 

("fit model to data")
Bottom-up: Start with everything in its

own cluster and decide on how to
iteratively merge clusters

Two main categories we'll talk about:

3. Use fitted model to
determine cluster assignments

Going from Similarities to Clusters
Generative models Hierarchical clustering

Top-down: Start with everything in 1
cluster and decide on how to

recursively split

1. Pretend data
generated by specific

model with parameters
2. Learn the parameters 

("fit model to data")
Bottom-up: Start with everything in its

own cluster and decide on how to
iteratively merge clusters3. Use fitted model to

determine cluster assignments

You learn a model 
➔ can predict cluster assignments

for points not seen in training

Easily works with different distances
(not just Euclidean)

Great for problems that don’t need
to predict clusters for future points

The most popular models effectively
assume Euclidean distance…

Different split/merge criteria lead to
clusters that look specific ways 

(e.g., chaining, crowding)

Example: Clustering on U.S. Counties

No need to predict which cluster new counties should
belong to, since we’re already looking at all U.S. counties!

(using opioid death rate data across 37 years)

Image source: Amanda Coston

Clustering
Generative models Hierarchical clustering

Top-down: Start with everything in 1
cluster and decide on how to

recursively split

1. Pretend data
generated by specific

model with parameters
2. Learn the parameters 

("fit model to data")
Bottom-up: Start with everything in its

own cluster and decide on how to
iteratively merge clusters3. Use fitted model to

determine cluster assignments

Many more methods we didn’t cover
• sklearn has a whole bunch more (not close to exhaustive)
• Also: remember the recommendation system setup?

• Co-clustering is the problem of clustering both users and
items at the same time (sklearn has a few methods)

